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ABSTRACT
Electronic contributions to the optical (hyper)polarizabilities of small silicon clus-

ters are theoretically determined. Geometries and the electronic structures of the clusters
are established using the tight-binding model. The nonlinear polarizabilities are found
to depend primarily on the symmetry of the cluster and prove to be high for the low-
symmetry clusters. Possible experiments and applications are discussed.

INTRODUCTION
Small semiconductor clusters in the range from a few atoms to tens of atoms are of

a great interest from the viewpoint of both fundamental science1 -  and applications. 5

Their physical properties (symmetry, electronic structure, optical spectra and transition
probabilities) differ significantly from those of the solid state both in the bulk and at
the surface, and also from the properties of nanoscale structures, such as quantum dots.
Linear and nonlinear optical properties of the latter have been shown to depend strongly
on their size in the region of quantum confinement (see. e.g., Refs. 5, 9 and 10). But
in these and similar works, the bulk electronic structure of the semiconductor is usually
assumed and modelled by free electrons with effective mass. Obviously, this approach
is valid only for sufficiently large objects with sizes not less than a few nanometers,
containing on the order of 1000 atoms or more.

In the present work, the optical properties of small silicon clusters with 7 - 13 W

atoms are predicted. For such clusters, the bulk approximation is not valid and the
detailed structure becomes important. Much work has been done on the structure of
silicon clusters, both experimentally for stability and photofragmentation12 and for op-
tical absorption,3' 4 and theoretically with ab-initio-type calculations for smaller 11-13 and
other methods for larger14 - 19 systems. The approach we use in this paper is based upon
the semiempirical tight-binding (TB) model. This model has previously been used" to
describe the structure of Sil0 isomers. It is relatively simple, thus allowing the global
optimization of the geometry cven for comparatively large clusters. Moreover, the TB 0
model couples the geometry to the electronic structure, which we find essential, but which 0
usually is ignored for larger systems. 14,15.

With the TB geometry and electronic structure and using one-electron density
matrix techniques, we obtain closed sum-over-one-electron-states expressions from which
linear and nonlinear optical polarizabilities of clusters are subsequently computed. These /.
characteristics govern a number of observable effects: light scattering and absorption by .y Codes
clusters, second-harmonic generation (SHG), optical rectification, birefringence induced and/ or
by optical fields and the Kerr effect, phase conjugation, etc. .,,,;al

THEORY
We write the TB Hamiltonian as1 8,20
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where a ,a and aa are electron creation and annihilation operators in the basis jpa) =

;a(r - R,,), with pa = {3s.3p,,3py,3p=} as the valence orbitals of silicon atom at the
sites p with coordinates R.. To reproduce the bulk silicon band structure with the
nearest-neighbor distance 2.35 A. the diagonal matrix elements of the Hamiltonian (1)
were fitted 20 to the values E' = -5.25 eV and = 1.20 eV. and the off-diagonal elements
to V, = -1.938 eV, Ip = 1.745 eV. I'P1 = 3.050 eV and Vp. = -1.075 eV. The off-
diagonal matrix elements were taken to behave Slater-Koster-like 2 1 in their angle and
distance dependence, and so their bond length dependence is 1/r 2 up to 3.3 A. where we
consider the bond to be broken."7

The diagonalization of the Hamiltonian gives the one-electron energies Ep and the
eigenvectors CP. Thus. we can write the one-electron states of the occupied and unoc-
cupied valence levels as

lP) = Cpi,ua) (2)

and the cohesion energy of the .V atoms due to the bond formation. which we call the
-band structure" energy, can be written as

=13p - X + U -E(qp- qO (3)
p a

where nP and no are occupation numbers, and the difference between the two first terms
is the stabilization energy of the four free-atom valence levels &0 due to the bonding. The
third term in Eq. (3) is added to include the intra-atomic Coulomb repulsion caused by
charge transfer within the cluster, and it is evaluated using the Mulliken charges q,, and

A with the constant U taken to be 1 eV. '

A repulsion energy term is finally added to account for the structure of small clus-
ters. It is the sum of interatomic pair potentials Ed(RAV) and a term depending on the
bond number .Vh,

N '

ER = Z Ed(RUV) - N c+ C+c2 7 +C3J (4)

This term has been fitted"8 within the present TB model to reproduce the bulk cohesion
energies 4.64 and 4.24 eV for the diamond and FCC structures, respectively, and the ab
znitio potential curve of the silicon dimer. This leads to the constants c, 0.225 eV.
c2 = 1.945 eV and c3 = -1.03 eV. which therefore set the second term to zero for Si 2 .
Finally, the total cohesion energy of the cluster is written as a sum of the band structure
energy EsS and the repulsion energy ER,

Ecoh = -(EBs + ER) (5)

which is maximized to find the structures of the Si clusters in the present work.

The dipole transition matrix elements (r)pq can be written as

(r)pq = E C;aCppaRp + C bCpa(r)ab . (6)
u a Ipab

where the atomic transition matrix elements are (r)ab = f pb*(r) r Pa(r) dr



We use the technique of the one-electron density matrix Ppq = ,atap). which ex-
actly takes into account the Fermi statistics of electrons, rather than the conventional
many-electron matrix26 2" . Using this technique, the nth-order polarizability a n) is con-
ventionally represented by means of double Feynman diagrams. For example. one of the
second-order contributions to at2) is given by

(w;1,j) -

2 (rk )pr(ri )rq(rj)qp (0)

rY = pq"- t '-.'- qr + i rqr)(&i - -pr + iFpr) P (7)

q

where iFpq = Fp + Eq is the pq-transition linewidth. Here one can trace the diagram-
matic rules. The horizontal lines correspond to one-electron states over which sum-
ination is implied. These lines are separated by vertices, and the vertex between the
lower p and q lines corresponds to -e(r)qp, and between the upper r and p lines to
c(r)pr. The vertical line connecting the states r and q denotes the one-electron propaga-
tor [- ' k - ,Wqr + IF qr l . where Z .. k is the sum of all photon frequencies to the right
of the propagator. .'qr = (-q - _ )/h is the transition frequency between the one-electron

states, and the free p lines denote p") ). The present diagrammatic technique is similar
to the conventional one,2 6' 2 7 with the difference here that all the operators and states
are one-electron ones. The second- and third-order polarizabilities are given by S and 48
diagrams. respectively.

NUMERICAL RESULTS
.Maximization of Ecoh (5) yields the cluster structures. The obtained cluster sym-

metry groups and important electronic structure data are given below in Table 1.

TABLE 1. Structure data for the Si 7 , Silo and Si 1 3 clusters. The names are from Ref. 17.
Eoh (eV) is the cohesion energy per atom. and F,, is the HOMO-LUMO band gap (both
in eV and nim).

Name N Point group Eoh. Coordination

(eV/atom) (eV. Lm) min. max. av.

7 D5h 3.S 1.8 0.69 4 6 4.6
DBTA-I 10 C2,, 4.0 1.4 0.87 4 7 .,J

TTP 10 C, 3.9 2.6 0.48 3 6 4.8
TO 10 Td 3.6 2.9 0.43 3 6 4.S

13 h 4.4 2.3 0.44 6 12 6.7

The linear polarizabilities Re aij(w) (10 - 23 cn"'m of the clusters obtained for dif-
ferent photon energies hw are given in Table 2. It filows from this table that Rea is
nonsensitive to the symmetry of the cluster, thus bearing little structural information. In
contrast, the cluster absorption spectra (See Fig.1), governed by Ima, strongly depend
on the cluster structure: the lower the symme..ry of the cluster, the richer its spectrum
with more red-hifted offset.

The values computed for the second-order polarizabilities (1082 esu) .3i)k(W,) -

c (2)(-2w~w,w) and Iij,(-W,w) = a( 2)(0;-w w), governing SHG and rectification, are
given in Table 3 (for the clusters not shown, /3 = 0 due to symmetry requirements). It can



TABLE 2

N Group 1] h. (eV: 0.0 0.5 1.0 1.77 1.5 2.33

7 Dhx.yy 9 9 5
-- 6 6 7 7 11

10 C 2.vXx 11 12 14 16 33 3
IY 10 11 11 12 15
-z 14 14 16 IS 43 13

10 C 3, .r. yy 12 12 13 13 14 24

z 13 13 14 14 15 24

10 Td xx. yy, zz 13 13 14 14 15 20

13 rh xx. YY, zz 14 14 14 15 15 17

(a) (C)

N1>0 2.0 I :.0 2.o :11

~(d)E (b)
U

0

i2.0

0

X 0.0 2.0 '1, 0.0 2.0 4,0

Photon energy (eV)

Fig. 1. Absorption spectra of clusters with the names and symmetry groups shown:
(a) Silo, DBTA-1 (C2.,); (b) Silo, TTP (C3,,); (c) Si7, (Dsli); (di Silo, TO (Td).



TABLE 3

N ijk hw (eV): 0.0 102 0.5 1.0 1.17 1.5 0.5 1.0 1.17

10 C 2, zzZ -2.9 -2.1 -3.9 5.3 3.9 8.8 -3.6 -8.0-13.8
Zyy -1.4 -0.9 -1.6 1.4 -0.3 2.1 -1.7 -3.0 -4.2
yyz, yzy -0.9 -0.9 -1.5 8.1 3.5 6.0 -1.1 -2.0 -2.9
Zxx 0.2 0.3 0.8 -3.2 -5.1 -2.4 0.2 -0.0 -0.5
Xxz,xzx 0.4 0.3 0.7-3.1 6.2 -45.6 0.6 1.6 3.1

10 C3, zz 1.8 1.3 1.6 3.7 7.0 31.2 1.9 2.5 2.8
yxx,xyx, xxy,-yyy 0.3 0.3 0.3 0.6 1.0 -4.7 0.3 0.3 0.3
zxx, zyy 0.8 0.3 0.3 0.4 0.5-16.0 0.9 1.2 1.4
xxz,yyz,xzx,yzy 0.2 0.3 0.4 0.9 1.7 16.5 0.2 0.3 0.3

10 Ti xyz,xzy,
yxz, yzx,
Zxy,xyx -0.3 -0.2 -0.3 -0.5 -0.8 3.4 -0.5 -0.6 -0.7

be seen from Table 3 that for the lower symmetry clusters C2 ,, and C3 , the magnitude of
.3 is considerably higher than for the higher symmetry Td cluster, reaching values which

are characteristic of organic molecules with high nonlinear responses.

The third-order polarizability - a( 3 ) (data are not shown) is symmetry- allowed

in all the cases. Again, the maximum responses are predicted for low-symmetry clusters,

reaching high values, -y ; 2 1032 esu, for the C2 , and C3,, clusters.

DISCUSSION

Linear polarizability can be measured for single clusters in experiments using laser

light scattering and photon-counting detection. However, this quantity is not sensitive
to cluster structure. In contrast, the optical absorption and hyperpolarizabilities do

primarily depend upon the cluster symmetry and. therefore, bear important structural

information.

The optical absorption of single clusters in jets can be measured similar to Ref. 30
in the following experiment. Clusters are excited by tunable probe radiation and are
also subjected to powerful IR radiation which is not absorbed from the ground state but
ionizes the clusters already excited by the probe light. The clusters ionized are detected
by the mass spectrometer.

The nonlinear optical responses can be detected if it is possible to accumulate clus-
ters in host media. High magnitude of the polarizabilities predicted promises possibility
of applications in optical and optoelectronic devices.
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